Abstract

Partial differential equations (PDEs) are essential foundations to model dynamic processes in natural sciences. Discovering the underlying PDEs of complex data collected from real world is key to understanding the dynamic processes of natural laws or behaviors. However, both the collected data and their partial derivatives are often corrupted by noise, especially from sparse outlying entries, due to measurement/process noise in the real-world applications. Our work is motivated by the observation that the underlying data modeled by PDEs are in fact often low rank. We thus develop a robust low-rank discovery framework to recover both the low-rank data and the sparse outlying entries by integrating double low-rank and sparse recoveries with a (group) sparse regression method, which is implemented as a minimization problem using mixed nuclear norms with ℓ1 and ℓ0 norms. We propose a low-rank sequential (grouped) threshold ridge regression algorithm to solve the minimization problem. Results from several experiments on seven canonical models (i.e., four PDEs and three parametric PDEs) verify that our framework outperforms the state-of-art sparse and group sparse regression methods. Code is available at https://github.com/junli2019/Robust-Discovery-of-PDEs

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.