Abstract

In this paper, we present a localization approach that is based on a point-cloud matching method (normal distribution transform “NDT”) and road-marker matching based on the light detection and ranging intensity. Point-cloud map-based localization methods enable autonomous vehicles to accurately estimate their own positions. However, accurate localization and “matching error” estimations cannot be performed when the appearance of the environment changes, and this is common in rural environments. To cope with these inaccuracies, in this work, we propose to estimate the error of NDT scan matching beforehand (off-line). Then, as the vehicle navigates in the environment, the appropriate uncertainty is assigned to the scan matching. 3D NDT scan matching utilizes the uncertainty information that is estimated off-line, and is combined with a road-marker matching approach using a particle-filtering algorithm. As a result, accurate localization can be performed in areas in which 3D NDT failed. In addition, the uncertainty of the localization is reduced. Experimental results show the performance of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call