Abstract
This paper introduces a way of modifying the bivariate normal likelihood function. One can use the adjusted likelihood to generate valid likelihood inferences for the regression parameter of interest, even if the bivariate normal assumption is fallacious. The retained asymptotic legitimacy requires no knowledge of the true underlying joint distributions so long as their second moments exist. The extension to the multivariate situations is straightforward in theory and yet appears to be arduous computationally. Nevertheless, it is illustrated that the implementation of this seemingly sophisticated procedure is almost effortless needing only outputs from existing statistical software. The efficacy of the proposed parametric approach is demonstrated via simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.