Abstract
Paired data arise naturally in Ophthalmology where pairs of eyes undergo diagnostic tests to predict the presence of certain diseases. The common correlation model is popular for modeling the joint probabilities of responses from fellow eyes for inference about accuracy measures. One of the assumptions underlying the model is exchangeability of fellow eyes that stipulates the accuracy measures such as sensitivities/specificities of fellow eyes be equal. We propose a parametric robust likelihood approach to testing the equality of accuracy measures of fellow eyes without modeling correlation. The robust likelihood procedure is applicable for inference about diagnostic accuracy measures in general paired designs. We provide simulations and analyses of a data set in Ophthalmology to demonstrate the effectiveness of the parametric robust procedure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.