Abstract
Inverse iteration is known to be an effective method for computing eigenvectors corresponding to simple and well-separated eigenvalues. In the non-symmetric case, the solution of shifted Hessenberg systems is a central step. Existing inverse iteration solvers approach the solution of the shifted Hessenberg systems with either RQ or LU factorizations and, once factored, solve the corresponding systems. This approach has limited level-3 BLAS potential since distinct shifts have distinct factorizations. This paper rearranges the RQ approach such that data shared between distinct shifts can be exploited. Thereby the backward substitution with the triangular R factor can be expressed mostly with matrix–matrix multiplications (level-3 BLAS). The resulting algorithm computes eigenvectors in a tiled, overflow-free, and task-parallel fashion. The numerical experiments show that the new algorithm outperforms existing inverse iteration solvers for the computation of both real and complex eigenvectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.