Abstract

The chapter presents a vehicle lateral-plane motion stability control approach for four-wheel independently actuated (FWIA) electric ground vehicles considering the tire force saturations. In order to deal with the possible modeling inaccuracies and parametric uncertainties, a linear-parameter-varying (LPV)-based robust $$\mathcal {H}_{\infty }$$ controller is designed to yield the desired external yaw moment. The lower-level controller operates the four in-wheel (or hub) motors such as the required control efforts can be satisfied. An analytical method without using the numerical optimization-based control-allocation algorithms is given to distribute the higher-level control efforts. The tire force constraints are also explicitly considered in the control-allocation design. Simulation results based on a high-fidelity, CarSim, full-vehicle model show the effectiveness of the proposed control approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.