Abstract

Auction is a promising approach for dynamic spectrum access in cognitive radio networks. Existing auction mechanisms are mainly strategy-proof to stimulate bidders to reveal their valuations of spectrum truthfully. However, they can suffer significantly from a new cheating pattern, named false-name bids, where a bidder can manipulate the auction by submitting bids under multiple fictitious names. We show such false-name bid cheating is easy to make but difficult to detect in dynamic spectrum auctions. To address this issue, we propose ALETHEIA, a novel flexible, false-name-proof auction framework for large-scale dynamic spectrum access. ALETHEIA not only guarantees strategy-proofness but also resists false-name bids. Moreover, ALETHEIA enables spectrum reuse across a large number of bidders, to improve spectrum utilization. Following that, we extend ALETHEIA to its general version that supports more practical and flexible auction, where bidders accept the spectrum allocation under their partial satisfactions. Theoretical analysis and simulation results show that ALETHEIA achieves both high spectrum redistribution efficiency and auction efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.