Abstract

An effective lane-detection algorithm is a fundamental component of an advanced driver assistant system, as it provides important information that supports driving safety. The challenges faced by the lane detection and tracking algorithm include the lack of clarity of lane markings, poor visibility due to bad weather, illumination and light reflection, shadows, and dense road-based instructions. In this paper, a robust and real-time vision-based lane detection algorithm with an efficient region of interest is proposed to reduce the high noise level and the calculation time. The proposed algorithm also processes a gradient cue and a color cue together and a line clustering with scan-line tests to verify the characteristics of the lane markings. It removes any false lane markings and tracks the real lane markings using the accumulated statistical data. The experiment results show that the proposed algorithm gives accurate results and fulfills the real-time operation requirement on embedded systems with low computing power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.