Abstract
Container terminal automation offers many potential benefits, such as increased productivity, reduced cost, and improved safety. Autonomous trucks can lead to more efficient container transport. A novel lane detection method is proposed using score-based generative modeling through stochastic differential equations for image-to-image translation. Image processing techniques are combined with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Genetic Algorithm (GA) to ensure fast and accurate lane positioning. A robust lane detection method can deal with complicated detection problems in realistic road scenarios. The proposed method is validated by a dataset collected from the port terminals under different environmental conditions; in addition, the robustness of the lane detection method with stochastic noise is tested.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.