Abstract

Conventional space–time adaptive processing (STAP) methods would suffer severely performance loss in the complex clutter environment of an airborne-phased array radar, especially when the estimated clutter covariance matrix (CCM) is corrupted by the interference targets (outliers). In order to improve the clutter suppression in a practical complex clutter, a robust knowledge-aided sparse recovery STAP method for non-homogeneity clutter suppression is proposed. In the proposed method, the spectral profiles of the clutter and outliers are firstly estimated by sparse recovery processing. Then based on the system prior parameters, the clutter mask is constructed to select the space–time steering vectors corresponding to the clutter components. Afterwards the clutter suppression is achieved based on the clutter subspace obtained from the selected space–time steering vectors. Since the clutter and outlier profiles are effectively estimated and distinguished by the knowledge-aided sparse recovery processing, robust clutter subspace estimation can be achieved for clutter suppression. Through the simulated and actual airborne-phased array radar data, it is verified that the proposed method can effectively improve the STAP performance in a non-homogeneous environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.