Abstract

A new data clustering algorithm Density oriented Kernelized version of Fuzzy c-means with new distance metric (DKFCM-new) is proposed. It creates noiseless clusters by identifying and assigning noise points into separate cluster. In an earlier work, Density Based Fuzzy C-Means (DOFCM) algorithm with Euclidean distance metric was proposed which only considered the distance between cluster centroid and data points. In this paper, we tried to improve the performance of DOFCM by incorporating a new distance measure that has also considered the distance variation within a cluster to regularize the distance between a data point and the cluster centroid. This paper presents the kernel version of the method. Experiments are done using two-dimensional synthetic data-sets, standard data-sets referred from previous papers like DUNN data-set, Bensaid data-set and real life high dimensional data-sets like Wisconsin Breast cancer data, Iris data. Proposed method is compared with other kernel methods, various noise resistant methods like PCM, PFCM, CFCM, NC and credal partition based clustering methods like ECM, RECM, CECM. Results shown that proposed algorithm significantly outperforms its earlier version and other competitive algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.