Abstract
Regularization schemes for regression have been widely studied in learning theory and inverse problems. In this paper, we study regularized distribution regression (DR) which involves two stages of sampling, and aims at regressing from probability measures to real-valued responses by regularization over a reproducing kernel Hilbert space. Many important tasks in statistical learning and inverse problems can be treated in this framework. Examples include multi-instance learning and point estimation for problems without analytical solutions. Recently, theoretical analysis on DR has been carried out via kernel ridge regression and several interesting learning behaviors have been observed. However, the topic has not been explored and understood beyond the least squares based DR. By introducing a robust loss function l σ for two-stage sampling problems, we present a novel robust distribution regression (RDR) scheme. With a windowing function V and a scaling parameter σ which can be appropriately chosen, l σ can include a wide range of commonly used loss functions that enrich the theme of DR. Moreover, the loss l σ is not necessarily convex, which enlarges the regression class (least squares) in the literature of DR. Learning rates in different regularity ranges of the regression function are comprehensively studied and derived via integral operator techniques. The scaling parameter σ is shown to be crucial in providing robustness and satisfactory learning rates of RDR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.