Abstract

<abstract><p>In this paper, we consider a new method dealing with the problem of estimating the scoring function $ \gamma_a $, with a constant $ a $, in functional space and an unknown scale parameter under a nonparametric robust regression model. Based on the $ k $ Nearest Neighbors ($ k $NN) method, the primary objective is to prove the asymptotic normality aspect in the case of a stationary ergodic process of this estimator. We begin by establishing the almost certain convergence of a conditional distribution estimator. Then, we derive the almost certain convergence (with rate) of the conditional median (scale parameter estimator) and the asymptotic normality of the robust regression function, even when the scale parameter is unknown. Finally, the simulation and real-world data results reveal the consistency and superiority of our theoretical analysis in which the performance of the $ k $NN estimator is comparable to that of the well-known kernel estimator, and it outperforms a nonparametric series (spline) estimator when there are irrelevant regressors.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.