Abstract

Kernel principal component analysis (KPCA) extends linear PCA from a real vector space to any high dimensional kernel feature space. The sensitivity of linear PCA to outliers is well-known and various robust alternatives have been proposed in the literature. For KPCA such robust versions received considerably less attention. In this article we present kernel versions of three robust PCA algorithms: spherical PCA, projection pursuit and ROBPCA. These robust KPCA algorithms are analyzed in a classification context applying discriminant analysis on the KPCA scores. The performances of the different robust KPCA algorithms are studied in a simulation study comparing misclassification percentages, both on clean and contaminated data. An outlier map is constructed to visualize outliers in such classification problems. A real life example from protein classification illustrates the usefulness of robust KPCA and its corresponding outlier map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.