Abstract

In this article, we consider a robust state-space filtering problem in the case that the transition probability density is unknown and possibly degenerate. The resulting robust filter has a Kalman-like structure and solves a minimax game: the nature selects the least favorable model in a prescribed ambiguity set, which also contains non-Gaussian probability densities, while the other player designs the optimum filter for the least favorable model. It turns out that the resulting robust filter is characterized by a Riccati-like iteration evolving on the cone of the positive-semidefinite matrices. Moreover, we study the convergence of such iteration in the case that the nominal model is with constant parameters on the basis of the contraction analysis in the same spirit of Bougerol. Finally, some numerical examples show that the proposed filter outperforms the standard Kalman filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.