Abstract

SummaryThe presence of outliers can considerably degrade the performance of linear recursive algorithms based on the assumptions that measurements have a Gaussian distribution. Namely, in measurements there are rare, inconsistent observations with the largest part of population of observations (outliers). Therefore, synthesis of robust algorithms is of primary interest. The Masreliez–Martin filter is used as a natural frame for realization of the state estimation algorithm of linear systems. Improvement of performances and practical values of the Masreliez‐Martin filter as well as the tendency to expand its application to nonlinear systems represent motives to design the modified extended Masreliez–Martin filter. The behaviour of the new approach to nonlinear filtering, in the case when measurements have non‐Gaussian distributions, is illustrated by intensive simulations. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.