Abstract

Background and objectiveActivated clotting time (ACT) is a point-of-care test used to monitor the effect of unfractionated heparin (UFH) during cardiopulmonary bypass (CPB). This test sometimes returns aberrant values, which can lead to the administration of an inappropriate dosing regimen. The development of a population-robust K-PD model of UFH could allow the individualisation and automation of UFH therapy during CPB. MethodsWe conducted a prospective observational study to collect ACT measurements from patients undergoing surgery using CPB. The ACT data were split into a development and validation cohort. The development cohort was used to estimate a standard and robust population K-PD model characterised by a residual error following a normal distribution and student's t-distribution. The ACT prediction performance using Bayesian estimates of individual K-PD parameters was evaluated by comparing predicted versus observed ACTs. Using estimates of the robust K-PD model, a Bayesian individualisation strategy to automate UFH administration was proposed and evaluated using Monte Carlo simulations. ResultsA total of 295 patients were included in the study, and 1561 ACTs were collected. In patients without outlier values, Bayesian estimates (based on four ACT measurements) from both standard and robust K-PD models had similar performances, with a median prediction bias close to 0 s. In patients with outlier measurements, the use of the robust K-PD model greatly improved the prediction bias and root-mean-square error (RMSE), with a mean prediction bias of 3.25 s, IQR = [-19.9; 46.03] versus -86 s IQR = [-135.7; -63.8] for the standard model. Monte Carlo simulations showed that the robust Bayesian individualisation strategy allowed the ACT to be maintained above the target using only two to three ACT measurements. ConclusionsThe use of a robust K-PD model reduced prediction bias and RMSE in patients with outlier ACT measurements. The Bayesian individualisation strategy using robust estimates of individual parameters may help automate UFH dosing regimens. Proper clinical validation is warranted before its use in daily clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call