Abstract
We consider the robust algorithms for the k-means clustering problem where a quantizer is constructed based on N independent observations. Our main results are median of means based nonasymptotic excess distortion bounds that hold under the two bounded moments assumption in a general separable Hilbert space. In particular, our results extend the renowned asymptotic result of (Ann. Statist. 9 (1981) 135–140) who showed that the existence of two moments is sufficient for strong consistency of an empirically optimal quantizer in Rd. In a special case of clustering in Rd, under two bounded moments, we prove matching (up to constant factors) nonasymptotic upper and lower bounds on the excess distortion, which depend on the probability mass of the lightest cluster of an optimal quantizer. Our bounds have the sub-Gaussian form, and the proofs are based on the versions of uniform bounds for robust mean estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.