Abstract
Despite technological advances in efficiency enhancement of quantification assays, biomedical studies on HIV RNA collect viral load responses that are often subject to detection limits. Moreover, some related covariates such as CD4 cell count may be often measured with errors. Censored non-linear mixed-effects models are routinely used to analyze this type of data and are based on normality assumptions for the between-subject and within-subject random terms. However, derived inference may not be robust when the underlying normality assumptions are questionable, especially in presence of skewness and heavy tails. In this article, we address these issues simultaneously under a Bayesian paradigm through joint modeling of the response and covariate processes using an attractive class of skew-normal independent densities. The methodology is illustrated using a case study on longitudinal HIV viral loads. Diagnostics for outlier detection is immediate from the MCMC output. Both simulation and real data analysis reveal the advantage of the proposed models in providing robust inference under non-normality situations commonly encountered in HIV/AIDS or other clinical studies. Supplementary materials accompanying this paper appear on-line.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Agricultural, Biological, and Environmental Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.