Abstract

Maintaining stability while walking on arbitrary surfaces or dealing with external perturbations is of great interest in humanoid robotics research. Increasing the system’s autonomous robustness to a variety of postural threats during locomotion is the key despite the need to evaluate noisy sensor signals. The equations of motion are the foundation of all published approaches. In contrast, we propose a more adequate evaluation of the equations of motion with respect to an arbitrary moving reference point in a non-inertial reference frame. Conceptual advantages are, e.g., getting independent of global position and velocity vectors estimated by sensor fusions or calculating the imaginary zero-moment point walking on different inclined ground surfaces. Further, we improve the calculation results by reducing noise-amplifying methods in our algorithm and using specific characteristics of physical robots. We use simulation results to compare our algorithm with established approaches and test it with experimental robot data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call