Abstract
In this paper we study the problem of computing robust invariant sets for state-constrained perturbed polynomial systems within the Hamilton-Jacobi reachability framework. A robust invariant set is a set of states such that every possible trajectory starting from it never violates the given state constraint, irrespective of the actual perturbation. The main contribution of this work is to describe the maximal robust invariant set as the zero level set of the unique Lipschitz-continuous viscosity solution to a Hamilton-Jacobi-Bellman (HJB) equation. The continuity and uniqueness property of the viscosity solution facilitates the use of existing numerical methods to solve the HJB equation for an appropriate number of state variables in order to obtain an approximation of the maximal robust invariant set. We furthermore propose a method based on semi-definite programming to synthesize robust invariant sets. Some illustrative examples demonstrate the performance of our methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.