Abstract

Recent breakthroughs in “water-in-salt” electrolyte (WiSE) made highly-safe aqueous Li-ion batteries (LIBs) possible. However, long-term cycling stability of the WiSE-based LIBs is limited by the Coulombic efficiency (CE) of only 97–98% at low current density. Achieving a CE closer to unity (1.0) is thus highly desirable and also a critical challenge due to the unfavorable splitting of water at the electrolyte/electrode interfaces. Here we report a urea-containing-WiSE that enables the aqueous LIBs with a high CE of 99.1% at low rate of 0.15 C, higher than typical WiSE-based LIBs operated at similar low current density. Robust water-resistant interphases with organic-inorganic hybrid amorphous microstructure were grown on both anode and cathode, which are responsible for the high CE in low rate. Such advanced interfacial chemistry with functional additives may open the way for designing cheaper but more durable aqueous batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.