Abstract

Ar obust integrated fault-tolerant flight control system is presented that accommodates different types of actuator failures and control effector damage, even while rejecting state-dependent disturbances. It is shown that a decentralized failure detection, identification, and reconfiguration system, combined judiciously with adaptive laws for damage estimates and variable structure adjustment laws for disturbance estimates, yields a stable system despite simultaneous presence of failures, damage and disturbances. The proposed system is well suited for the case of first-order actuator dynamics. The properties of the proposed algorithms are illustrated on a medium-fidelity nonlinear simulation of Boeing’s Tailless Advanced Fighter Aircraft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call