Abstract

After functioning for a long period, the intrinsic parameters of a grid-connected Doubly Fed Induction Generator may undergo variations due to temperature increase or saturation. The difference between real machine parameters and those considered during the synthesis of controllers may also differ due to modelling error. When this variation occurs, conventional controllers that depend on these machine parameters for their design and tuning may perform badly, leading to inefficient power control of the overall system. This paper presents the grid connected Doubly Fed Induction Generator wind energy conversion system under the Field Orientation Control scheme. A robust nonlinear Integral Backstepping controller is designed and analyzed to improve the efficiency of the system. The control strategy executes active and reactive power control through speed and current control at the rotor side converter. The proposed strategy is asymptotically stable in the context of Lyapunov theory and in the presence of parameter variations. Some simulation results are presented and discussed for a 660 kW wound rotor induction generator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.