Abstract

AbstractIn this paper, the robust input covariance constraint (ICC) control problem with polytopic uncertainty is solved using convex optimization with linear matrix inequality (LMI) approach. The ICC control problem is an optimal control problem that optimizes the output performance subjected to multiple constraints on the input covariance matrices. This control problem has significant practical implications when hard constraints need to be satisfied on control actuators. The contribution of this paper is the characterization of the control synthesis LMIs used to solve the robust ICC control problem for polytopic uncertain systems. Both continuous‐ and discrete‐time systems are considered. Parameter‐dependent and independent Lyapunov functions have been used for robust ICC controller synthesis. Numerical design examples are presented to illustrate the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call