Abstract

In sensorless control of permanent magnet brushless AC machines, it is necessary to identify the initial rotor position prior to start-up the machine. Although saliency tracking based sensorless techniques are proven to be a good candidate to estimate the initial rotor position in sensorless control, magnetic polarity identification is another important issue. Since the machine saliency undergoes two cycles in single electrical period, the estimated position information based on machine saliency has an angle ambiguity of p. With the aid of magnetic saturation effect, this paper proposes a robust initial rotor position estimation scheme, which utilizes both d- and q-axis carrier current, instead of only q-axis carrier current in conventional pulsating carrier signal injection based sensorless control algorithm. Finally, the experimental results confirm the effectiveness and robustness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.