Abstract

BackgroundResponse of cells to changing endogenous or exogenous conditions is governed by intricate molecular interactions, or regulatory networks. To lead to appropriate responses, regulatory network should be 1) context-specific, i.e., its constituents and topology depend on the phonotypical and experimental context including tissue types and cell conditions, such as damage, stress, macroenvironments of cell, etc. and 2) time varying, i.e., network elements and their regulatory roles change actively over time to control the endogenous cell states e.g. different stages in a cell cycle.ResultsA novel network model PathRNet and a reconstruction approach PATTERN are proposed for reconstructing the context specific time varying regulatory networks by integrating microarray gene expression profiles and existing knowledge of pathways and transcription factors. The nodes of the PathRNet are Transcription Factors (TFs) and pathways, and edges represent the regulation between pathways and TFs. The reconstructed PathRNet for Kaposi's sarcoma-associated herpesvirus infection of human endothelial cells reveals the complicated dynamics of the underlying regulatory mechanisms that govern this intricate process. All the related materials including source code are available at http://compgenomics.utsa.edu/tvnet.html.ConclusionsThe proposed PathRNet provides a system level landscape of the dynamics of gene regulatory circuitry. The inference approach PATTERN enables robust reconstruction of the temporal dynamics of pathway-centric regulatory networks. The proposed approach for the first time provides a dynamic perspective of pathway, TF regulations, and their interaction related to specific endogenous and exogenous conditions.

Highlights

  • Response of cells to changing endogenous or exogenous conditions is governed by intricate molecular interactions, or regulatory networks

  • Only two types of directed links are allowed, i.e., a link from a signaling pathway node to a Transcription Factors (TFs) node is placed if TF is in the downstream of the signaling pathway and a link from a TF node to a signaling or a metabolic pathway is placed if the TF regulated gene set contains genes in the pathway

  • The novelties of our approach that enable the discovery are: 1) A robust and biological driven network architecture, PathRNet, which builds upon the existing functional databases; 2) A functional enrichment based algorithm that assesses the enrichment and time span of the regulation of TFs and pathways in the context-specific time series microarray data

Read more

Summary

Introduction

Response of cells to changing endogenous or exogenous conditions is governed by intricate molecular interactions, or regulatory networks. To lead to appropriate responses, regulatory network should be 1) context-specific, i.e., its constituents and topology depend on the phonotypical and experimental context including tissue types and cell conditions, such as damage, stress, macroenvironments of cell, etc. Through revealing various system level interactions including transcription regulation, signal transductions, and metabolic reactions, regulatory networks. The goal of network construction is to elucidate the gene/protein interaction relationships, in an effort to obtain more realistic and predictive models of molecular regulation. This prompts us to study the complex patterns of regulatory network that depend on temporal and condition-specific context. The context-dependent regulation accounts for the heterogeneity of diverse cell phenotypes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.