Abstract
Thermonuclear (type-I) bursts arise from unstable ignition of accumulated fuel on the surface of neutron stars in low-mass X-ray binaries. Measurements of burst properties in principle enable observers to infer the properties of the host neutron star and mass donors, but a number of confounding astrophysical effects contribute to systematic uncertainties. Here we describe some commonly used approaches for determining system parameters, including composition of the burst fuel, and introduce a new suite of software tools, concord, intended to fully account for astrophysical uncertainties. The comparison of observed burst properties with the predictions of numerical models is a complementary method of constraining host properties, and the tools presented here are intended to make comprehensive model-observation comparisons straightforward. When combined with the extensive samples of burst observations accumulated by X-ray observatories, these software tools will provide a step change in the amount of information that can be inferred about typical burst sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.