Abstract

Kotlarski's identity has been widely used in applied economic research based on repeated‐measurement or panel models with latent variables. However, how to conduct inference for these models has been an open question for two decades. This paper addresses this open problem by constructing a novel confidence band for the density function of a latent variable in repeated measurement error model. The confidence band builds on our finding that we can rewrite Kotlarski's identity as a system of linear moment restrictions. Our approach is robust in that we do not require the completeness. The confidence band controls the asymptotic size uniformly over a class of data generating processes, and it is consistent against all fixed alternatives. Simulation studies support our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.