Abstract

Filtering and smoothing algorithms for linear discrete-time state-space models with skewed and heavy-tailed measurement noise are presented. The algorithms use a variational Bayes approximation of the posterior distribution of models that have normal prior and skew-t-distributed measurement noise. The proposed filter and smoother are compared with conventional low-complexity alternatives in a simulated pseudorange positioning scenario. In the simulations the proposed methods achieve better accuracy than the alternative methods, the computational complexity of the filter being roughly 5 to 10 times that of the Kalman filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.