Abstract

The use of particulate adjuvants offers an interesting method for enhancing and modulating the immune responses elicited by vaccines. Aluminum salt (Alum) is one of the most important immune adjuvants approved by the Food and Drug Administration for use in humans because of its safety and efficacy, but it lacks the capacity to induce strong cellular and mucosal immune responses. In this study, we designed an antigen delivery system that combines aluminum salts with β-glucan particles. The β-glucan-aluminum particles (GP-Al) exhibited a highly uniform size of 2-4 μm and could highly specifically target antigen-presenting cells (APCs) and strongly induce dendritic cell (DC) maturation and cytokine secretion. In vivo studies showed that both WT mice and HBV-Tg mice immunized with hepatitis B surface antigen (HBsAg)-containing GP-Al displayed high anti-HBsAg IgG titers in the serum. Furthermore, in contrast to mice receiving the antigen alone, mice immunized with the particulate adjuvant exhibited IgG2a antibody titers and higher antigen-specific IFN-γ levels in splenocytes. In conclusion, we developed GP-Al microspheres to serve as a hepatitis B vaccine to enhance both humoral and cellular immune responses, representing a safe and promising system for antigen delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.