Abstract

The overexpression of saccharides such as Globo-H, Lewis(Y) and Tn antigen is a common feature of oncogenic transformed cells. Endeavors to exploit this aberrant glycosylation for cancer vaccine development have been complicated by difficulties in eliciting high titers of IgG antibodies against classical conjugates of tumor-associated carbohydrates to carrier proteins. We have designed, chemically synthesized and immunologically evaluated a number of fully synthetic vaccine candidates to establish strategies to overcome the poor immunogenicity of tumor-associated carbohydrates and glycopeptides. We have found that a three-component vaccine composed of a TLR2 agonist, a promiscuous peptide T-helper epitope and a tumor-associated glycopeptide can elicit in mice exceptionally high titers of IgG antibodies that can recognize cancer cells expressing the tumor-associated carbohydrate. The superior properties of the vaccine candidate are attributed to the local production of cytokines, upregulation of co-stimulatory proteins, enhanced uptake by macrophages and dendritic cells and avoidance of epitope suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.