Abstract
Over the last decade, there has been an increasing emphasis on driver-assistance systems for the automotive domain. In this article, we report our work on designing a camera-based surveillance system embedded in a “smart” car door. Such a camera is used to monitor the ambient environment outside the car, for instance, the presence of obstacles such as approaching cars or cyclists who might collide with the car door if opened—and automatically control the car door operations. This is an enhancement to the currently available side-view mirrors that the driver/passenger checks before opening the car door. The focus of this article is on fast and robust image processing algorithms specifically targeting such a smart car door system. The requirement is to quickly detect traffic objects of interest from grayscale images captured by omnidirectional cameras. While known algorithms for object extraction from the image processing literature rely on color information and are sensitive to shadows and illumination changes, our proposed algorithms are highly robust, can operate on grayscale images (color images are not available in our setup), and output results in real time. We present a number of experimental results based on image sequences captured from real-life traffic scenarios to demonstrate the applicability of our algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.