Abstract
Images taken in low light conditions typically contain distracting noise, and eliminating such noise is a crucial computer vision problem. Additional photos captured with a camera flash can guide an image denoiser to preserve edges since the flash images often contain fine details with reduced noise. Nonetheless, a denoiser can be misled by inconsistent flash images, which have image structures (e.g., edges) that do not exist in no-flash images. Unfortunately, this disparity frequently occurs as the flash/no-flash pairs are taken in different light conditions. We propose a learning-based technique that robustly fuses the image pairs while considering their inconsistency. Our framework infers consistent flash image patches locally, which have similar image structures with the ground truth, and denoises no-flash images using the inferred ones via a combination model. We demonstrate that our technique can produce more robust results than state-of-the-art methods, given various flash/no-flash pairs with inconsistent image structures. The source code is available at https://github.com/CGLab-GIST/RIDFnF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.