Abstract
This paper considers the robust identification issue of linear systems represented by autoregressive exogenous models using the recursive expectation-maximization (EM) algorithm. In this paper, a recursive Q-function is formulated based on the maximum likelihood principle. Meanwhile, the outliers that frequently appear in practical processes are accommodated with the Student’s t-distribution. The parameter vector, variance of noise, and the degree of freedom are recursively estimated. Finally, a numerical example, as well as a simulated continuous stirred tank reactor (CSTR) system, is performed to verify the effectiveness of the proposed recursive EM algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.