Abstract

Radial Basis Function Neural Network (RBFNN) is considered as a good applicant for the prediction problems due to it’s fast convergence speed and rapid capacity of learning, therefore, has been applied successfully to nonlinear system identification. The traditional RBF networks have two primary problems. The first one is that the network performance is very likely to be affected by noise and outliers. The second problem is about the determination of the parameters of hidden nodes. In this paper, a novel method for robust nonlinear system identification is constructed to overcome the problems of traditional RBFNNs. This method based on using Support Vector Regression (SVR) approach as a robust procedure for determining the initial structure of RBF Neural Network. Using Genetic Algorithm (GA) for training SVR and select the best parameters as an initialization of RBFNNs. In the training stage an Annealing Robust Learning Algorithm (ARLA) has been used for make the networks robust against noise and outliers. The next step is the implementation of the proposed method on the Hydrocarbon Debutanizer unit for prediction of n-butane (C4) content. The performance of the proposed method (ARLA-RBFNNs) has been compared with the conventional RBF Neural Network approach. The simulation results show the superiority of ARLA-RBFNNs for process identification with uncertainty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.