Abstract

One of the most common nonlinear time series (random processes with discrete time) models is the exponential autoregressive model. In particular, it describes such nonlinear effects as limit cycles, resonant jumps, and dependence of the oscillation frequency on amplitude. When identifying this model, the problem arises of estimating its parameters --- the coefficients of the corresponding autoregressive equation. The most common methods for estimating the parameters of an exponential model are the least squares method and the least absolute deviation method. Both of these methods have a number of disadvantages, to eliminate which the paper proposes an estimation method based on the robust Huber approach. The obtained estimates occupy an intermediate position between the least squares and least absolute deviation estimates. It is assumed that the stochastic sequence is described by the autoregressive equation of the first order, is stationary and ergodic, and the probability distribution of the innovations process of the model is unknown. Unbiased, consistency and asymptotic normality of the proposed estimate are established by computer simulation. Its asymptotic variance was found, which allows to obtain an explicit expression for the relative efficiency of the proposed estimate with respect to the least squares estimate and the least absolute deviation estimate and to calculate this efficiency for the most widespread probability distributions of the innovations sequence of the equation of the autoregressive model

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.