Abstract

This paper describes the technical and analytical performance of a novel set of hybridization probes for the four GARDASIL® vaccine-relevant HPV types (6, 11, 16 and 18). These probes are obtained through i<em>n vitro </em>selection from a pool of random oligonucleotides, rather than the traditional “rational design” approach typically used as the initial step in assay development. The type-specific segment of the HPV genome was amplified using a GP5+/6+ PCR protocol and 39 synthetic oligonucleotide templates derived from each of the HPV types, as PCR targets. The robust performance of the 4 selected hybridization probes was demonstrated by monitoring the preservation of the specificity and sensitivity of the typing assay over all 39 HPV types, using a different spectrum of HPV (genome equivalent: 103-109) and human DNA concentrations (10-100 ng) as well as temperature and buffer composition variations. To the Authors’ knowledge, this is a unique hybridization-based multiplex typing assay. It performs at ambient temperatures, does not require the strict temperature control of hybridization conditions, and is functional with a number of different non-denaturing buffers, thereby offering downstream compatibility with a variety of detection methods. Studies aimed at demonstrating clinical performance are needed to validate the applicability of this strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call