Abstract

This paper presents a new class of robust zero-order algorithms for the solution of real-time optimization problems with acceleration. In particular, we propose a family of extremum seeking (ES) dynamics that can be universally modeled as singularly perturbed hybrid dynamical systems with restarting mechanisms. From this family of dynamics, we synthesize four fast algorithms for the solution of convex, strongly convex, constrained, and unconstrained optimization problems. In each case, we establish robust semi-global practical asymptotic or exponential stability results, and we also show how to obtain well-posed discretized algorithms that retain the main properties of the original dynamics. Given that existing averaging theorems for singularly perturbed hybrid systems are not directly applicable to our setting, we derive an extended averaging theorem that relaxes some of the assumptions made in the literature, allowing us to make a clear link between the KL bounds that characterize the rates of convergence of the hybrid dynamics and their average dynamics. We also show that our results are applicable to non-hybrid algorithms, thus providing a general framework for accelerated ES dynamics based on averaging theory. We present different numerical examples to illustrate our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.