Abstract

This work presents a hybrid position-force control of robots for surface polishing using task priority. The robot force control is designed using sliding mode ideas in order to benefit from its inherent robustness and low computational cost. In order to avoid the chattering drawback typically present in sliding mode control, several chattering-free controllers are evaluated and tested. A distinctive feature of the method is that the sliding mode force task is defined using not only equality constraints but also inequality constraints, which are satisfied using conventional and nonconventional sliding mode control, respectively. Moreover, a lower priority tracking controller is defined to follow the desired reference trajectory on the surface being polished. The applicability and the effectiveness of the proposed approach considering the mentioned chattering-free controllers are substantiated by experimental results using a redundant 7R manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.