Abstract
Author(s): Malladi, BP; Butcher, EA; Sanfelice, RG | Abstract: A hybrid feedback control scheme is proposed for stabilization of rigid body dynamics (pose and velocities) using unit dual quaternions, in which the dual quaternions and veloc- ities are used for feedback. It is well-known that rigid body attitude control is subject to topological constraints which often result in discontinuous control to avoid the unwinding phenomenon. In contrast, the hybrid scheme allows the controlled system to be robust in the presence of uncertainties, which would otherwise cause chattering about the point of discontinuous control while also ensuring acceptable closed-loop response characteristics. The stability of the closed-loop system is guaranteed through a Lyapunov analysis and the use of invariance principles for hybrid systems. Simulation results for a rigid body model are presented to illustrate the performance of the proposed hybrid dual quaternion feedback control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.