Abstract

A new design method of two-dimensional (2D) controller for multi-phase batch processes with time delay and disturbances is proposed to ensure the stability of the control system and realize efficient production in industry. The batch process is first converted to an equivalent but different dimensional 2D-FM switched system. Based on the 2D system framework, then sufficient conditions of a controller existence expressed by linear matrix inequalities (LMIs) that stabilizing system is given by means of the average dwell time method. Meanwhile, robust hybrid 2D controller design containing extended information is proposed and the minimum runtime lower bound of each sub-system is accurately calculated. The design advantages of the controller depend on the size of the time delay so it has a certain degree of robustness. At the same time, considering the exponential stability, the system can have a faster rate of convergence. In addition, the introduction of extended information has improved the control performance of the system to some extent. The acquisition of minimum time at different phases will promote certain production efficiency and thus reduce energy consumption. Finally, an injection process in industrial production process has been taken as an example to verify effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.