Abstract

A simple prototypical hybrid dynamic system, namely the bouncing ball system, is used to illustrate modeling and control of a hybrid dynamic system. This standard system is extended to include a complex inelastic bounce surface and actuation. A nonlinear one-axis prismatic actuator applies a bounce force to the ball to regulate the bounce height. Several controllers are compared with each other in simulations; linear and nonlinear PID, inverse dynamic, and fuzzy logic. Robustness against unmodeled dynamics, parameter variations and external disturbances are shown. SimMechanics is used to model the bounce actuator, bouncing ball system and surface. Simulation results show that the fuzzy logic controller fairs better on average on a complex surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.