Abstract

Vertical take-off and landing (VTOL) aircraft has the merits of both fixed-wing and rotary-wing aircraft. Tail-sitter is the simplest way for the VTOL maneuver since it does not need extra actuators. However, conventional tail-sitting airplanes made by propellers or duct fans have less thrust and efficiency. In this paper a conceptual thrust-vectored unmanned tail-sitter (CTUT) aircraft which is controlled by no control surfaces but only with two thrust vectors is introduced. However, the system of hovering control for a tail-sitter UAV is like a 3-D inverse pendulum, which is unstable and quite difficult to control against the gust load in traditional PID controllers. In this paper, the synthesized system model including thrust-vectored tail-sitter aircraft model, actuator system and gust model is developed. The LQG/LTR control for robust hovering against gust load is proposed. The results show that the controller designed successfully compensates the errors generated by gust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call