Abstract

A robust high-order matched filter (RHMF) for automatic target detection in hyperspectral images is proposed. The classical detection methods mainly focus on second-order statistics and do not take intrinsic uncertainty or variability of target spectral signatures into account. For automatic target detection in a hyperspectral image, most interesting targets usually occur with low probabilities and small population and they generally cannot be described by second-order statistics. Also, one difficult point in target detection is the inherent variability in target spectral signatures. Under such circumstances, the RHMF algorithm uses high-order statistics, and takes variability into consideration, and has been shown by presented experiments to be more effective than classical detection methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.