Abstract

An enhanced configuration for a linearized MOS operational transconductance amplifier (OTA) is proposed. The proposed fully differential OTA circuit is based on resistive source degeneration and an improved adaptive biasing technique. It is robust to process variation, which has not been fully shown in previously reported linearization techniques. Detailed harmonic distortion analysis demonstrating the robustness of the proposed OTA is introduced. The transconductance gain is tunable from 160 to 340 /spl mu/S with a third-order intermodulation (IM3) below -70 dB at 26 MHz. As an application, a 26-MHz second-order low-pass filter fabricated in TSMC 0.35-/spl mu/m CMOS technology with a power supply of 3.3 V is presented. The measured IM3 with an input voltage of 1.4 Vpp is below - 65 dB for the entire filter pass-band, and the input referred noise density is 156nV//spl radic/Hz. The cutoff frequency of the filter is tunable in the range of 13-26 MHz. Theoretical and experimental results are in good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.