Abstract
One of the main challenges in computational simulations of gas detonation propagation is that negative density or negative pressure may emerge during the time evolution, which will cause blow-ups. Therefore, schemes with provable positivity-preserving of density and pressure are desired. First order and second order positivity-preserving schemes were well studied, e.g., [6,10]. For high order discontinuous Galerkin (DG) method, even though the characteristicwise TVB limiter in [1,2] can kill oscillations, it is not sufficient to maintain the positivity. A simple solution for arbitrarily high order positivity-preserving schemes solving Euler equations was proposed recently in [22]. In this paper, we first discuss an extension of the technique in [22–24] to design arbitrarily high order positivity-preserving DG schemes for reactive Euler equations. We then present a simpler and more robust implementation of the positivity-preserving limiter than the one in [22]. Numerical tests, including very demanding examples in gaseous detonations, indicate that the third order DG scheme with the new positivity-preserving limiter produces satisfying results even without the TVB limiter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.