Abstract
The design of artificial photocatalytic devices that simulates the ingenious and efficient photosynthetic systems in nature is promising. Herein, a metal-organic cage [Pd6(NPyCzPF)12]12+ (MOC-PC6) integrating 12 organic ligands NPyCzBP and 6 Pd2+ catalytic centers is designed, which is well defined to include organic dye fluorescein (FL) for constructing a supramolecular photochemical molecular device (SPMD) FL@MOC-PC6. Photoinduced electron transfer (PET) between MOC-PC6 and the encapsulated FL has been observed by steady-state and time-resolved emission spectroscopy. FL@MOC-PC6 is successfully heterogenized with TiO2 by a facile sol-gel method to achieve a robust heterogeneous FL@MOC-PC6-TiO2. The close proximity between the Pd2+ catalytic site and FL included in the cage enables PET from the photoexcited FL to Pd2+ sites through a powerful intramolecular pathway. The photocatalytic hydrogen production assessments of the optimized 4 wt % FL@MOC-PC6-TiO2 demonstrate an initial H2 production rate of 2402 μmol g-1 h-1 and a turnover number of 4356 within 40 h, enhanced by 15-fold over that of a homogeneous FL@MOC-PC6. The effect of the MOC content on photocatalytic H2 evolution (PHE) is investigated and the inefficient comparison systems, such as MOC-PC6, MOC-PC6-TiO2, FL-sensitized MOC-PC6/FL-TiO2, and analogue FL/MOC-PC6-TiO2 with free FL, are evaluated. This study provides a creative and distinctive approach for the design and preparation of novel heterogeneous SPMD catalysts based on MOCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.