Abstract
With the advantages of anti-interference and no accumulated error, bionic polarization heading measurement has important military significance and research value for autonomous navigation. However, the heading robustness is seriously affected by the accuracy of the skylight polarization model and the existing methods all use the Rayleigh scattering model without considering atmospheric depolarization. Therefore, this article proposed an innovative method of polarization heading measurement based on the Berry model to consider the influence of depolarization neutral points. And this model is improved by controlling the neutral points with correction coefficients to realize high-robustness heading measurement. On this basis, the improved Berry model is further used to calibrate the sensor parameters outdoors, which separates the skylight polarization model error from the sensor error without expensive instruments and complicated processes and improves the heading measurement accuracy. In the experiments with changing solar altitude, the average heading error STD after field calibration is 20.86% lower than that of the Berry model and 92.85% lower than that of the Rayleigh model, which shows great advancement in actual measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.