Abstract
In e-Learning research, teachers can record lecture videos in e-class and upload these lecture videos to e-Learning system themselves. Once lecture videos and handouts can be generated automatically in traditional classroom, it can help students with self-learning and teacher with lecture content development for e-Learning services. This paper proposed a teaching assistant system based on computer vision that can help in content development for e-Learning services. Lecture videos are taken by using two cameras and merged on both sides so that students can see a clear and complete teaching content. The k-means segmentation is used to extract board area and then connected component technique helps refill the board area which is covered by lecturer's body. Then we use adaptive threshold to extract handwritings in various light conditions and time-series denoising technique is designed to reduce noise. According to extracted handwritings, the lecture videos can be automatically structured with high level of semantics. The lecture videos are segmented into video clips and all key-frames are integrated as handouts of the education videos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.